Ref No: FBPR-5226 Date: 03-JAN-2023

Author: FS, VK, MSL. Version: 2



## FRESH BIOPRINTING PROTOCOL

# TeloCol-10

This is a suggested procedure, please adjust it according to your experimental needs. To maintain the sterility of the product, work under sterile conditions.

## Protocol aim

The aim of this protocol is to provide instructions for the bioprinting of complex 3D structures with TeloCol®-10 (Type I Collagen from bovine) Solution from Advanced BioMatrix) using FRESH printing method. It covers the steps of pre-print procedures, printing, and post-print crosslinking. Changing the parameters in the protocol might change printing conditions such as pressure and speed. This protocol was optimized for the Temperature-controlled printhead using the BIO X.

## Materials needed

- TeloCol®-10 (10 mg/mL)\*
- 1X PBS and 10X PBS
- Sodium hydroxide, 1M NaOH
- LifeSupport<sup>TM</sup>\*
- Well plate or Petri dish\*
- Temperature-controlled printhead\*
- BIO X\* or BIO X6\* bioprinter
- Positive displacement pipette
- Eppendorf tube 1.5 mL
- Ice bath
- Cell suspension in cell culture medium
- Cartridge, 3cc\*
- 22G Conical bioprinting needle (1-inch length)\*

\*The product can be purchased in the CELLINK shop at www.cellink.com/shop.

## **Protocol**

This protocol is adjusted for printing scaffolds at the final TeloCol® concentration of 6 mg/mL. For other concentrations, recalculations need to be made but the same protocol can be followed. To avoid premature collagen self-assembly, we recommend keeping the collagen, all reagents (including cell culture medium) and all consumables in the fridge prior to printing. Once compacted, LifeSupport™ should be kept in a fridge at 4°C and used within 12 hours. The ambient temperature should not exceed 23°C during handling or printing.

Preparing LifeSupport<sup>TM</sup> bath

### **MATERIAL**

LifeSupport<sup>TM</sup> 1X PBS Well plate or Petri dish

### **DESCRIPTION**

Add 40 mL of cold 1X PBS (4°C) to LifeSupport<sup>TM</sup> tube (sterile powder).

Note: 2 g of sterile LifeSupport<sup>™</sup> powder corresponding to 15 mL of LifeSupport<sup>™</sup> bath. For detailed directions, visit <a href="https://www.cellink.com/wp-content/uploads/2022/03/FluidformDirectionsforUseVersion6-rev-Sep-2021.pdf">https://www.cellink.com/wp-content/uploads/2022/03/FluidformDirectionsforUseVersion6-rev-Sep-2021.pdf</a>.

- Vortex for 1 minute.
- Put the tube into the fridge (4°C) for 15 minutes.
- Centrifuge for 5 minutes at 400 g.
- Gently pour off or aspirate the liquid supernatant.
- Grab the tube by the cap, hold it horizontally, and gently tap it against a palm 15 times.
- Shake the tube with dislodged LifeSupport™ vigorously for 10 seconds. Shake along the length of the tube.
- Centrifuge for further 5 minutes at 400 g.
- The LifeSupport<sup>™</sup> should now be compacted at the bottom of the centrifuge tube. Gently pour off or aspirate any remaining liquid supernatant to leave only the compacted LifeSupport™ in the bottom of the tube.
- Transfer the resulting LifeSupport<sup>TM</sup> bath with a sterile spatula into well plates or Petri dish and store it in a fridge until use.

## Preparing for printing

### **MATERIAL**

Temperature-controlled printhead BIO X or BIO X6 bioprinter TeloCol®-10 (10 mg/mL) Eppendorf tube 1.5 mL Positive displacement pipette

Ice bath

10X PBS

1M NaOH sterile

Cell suspension in cell culture medium of choice

Cartridge, 3cc

22G Conical bioprinting needle (1-inch length)

#### **DESCRIPTION**

- Place the Temperature-controlled printhead into the fridge at least 30 minutes before printing.
- Prepare the cell suspension, place in the fridge while preparing the TeloCol<sup>®</sup> solution.
- To prepare 1 mL of 6 mg/mL TeloCol<sup>®</sup> solution for printing, transfer 600 μL of TeloCol<sup>®</sup> 10 mg/mL solution into a sterile Eppendorf tube using a positive displacement pipette. Keep the Eppendorf tube on ice.
- Add 100 µL of 10X PBS and use the same pipette to homogenize the resulting solution.
- Add 7.0 µL of 1M NaOH sterile. Pipette the solution up and down to neutralize collagen.

Note: The amount of NaOH needed to neutralize the TeloCol® 10 mg/mL can slightly vary from batch to batch. We recommend the addition of it in small volume increments, adjusting the pH to 7.0-7.4.

• Add 293 µL of cell suspension and pipette the solution up and down until complete homogenization.

Note: The volume of cell suspension can change depending on the volume of NaOH needed for the neutralization. Adjust it to have a final volume of 1 mL bioink.

• Take the Temperature-controlled printhead from the fridge and mount on the BIO X or BIO X6, set the temperature to 5°C and for the print bed 10°C, this is to guarantee the LifeSupport<sup>TM</sup> bath stability.

Note: Make sure the ambient temperature in the lab is maintained at 21-23°C, otherwise you may use ice packs inside the printing chamber to prevent the printing area from overheating.

• Load a cartridge with the bioink using a pipette. Cap the cartridge with a printing needle and place it in the printhead.

3. Printing

### **MATERIAL**

BIO X or BIO X6 bioprinter Well plate or Petri dish previously filled with LifeSupport  $^{TM}$  bath Cartridge with the TeloCol $^{\circledR}$  bioink

### **DESCRIPTION**

Place the well plate or Petri dish previously filled with LifeSupport<sup>TM</sup> bath and place it on the print bed. Print
constructs according to application. Suggested starting parameters are 3.5 mm/s printing speed and 8-10 kPa
pressure.

Note: If printability is not as desired, adjust the pressure and/or speed to up/down to extrude more/less material at different speeds.

4. Incubation and crosslinking

### **MATERIAL**

Cell culture medium

### **DESCRIPTION**

- Keep the constructs for 10 min at room temperature to ensure initial collagen self-assembly prior to the melting of supporting bath.
- Incubate the constructs for 30 minutes at 37°C (5% CO₂ and 95% relative humidity) for further self-assembly
  of TeloCol® and LifeSupport™ melting.

Note: Large volumes may require longer times for the supporting bath to fully melt.

Remove melted LifeSupport<sup>™</sup> by replacing it with warm cell media to avoid handling the printed construct.
 For example, if you printed into a 6-well plate, this can be done by carefully aspirating 2 mL of melted
 LifeSupport<sup>™</sup> out and adding 2 mL of warm cell media. Repeat this process until most of the support bath
 has been replaced by media.