Application Notes

Find all the resources you need to make an informed decision. Leverage material written by CELLINK scientists for scientists.

In this study, human lung cancer cells were cultured on 2D polystyrene plates and in 3D bioprinted gelatin methacrylate (GelMA) and Matrigel for 14 days to observe spheroid formation, cell morphology and junctional proteins.

In Vitro 3D Lung Cancer Model Presents a More Relevant Expression of Junctional Proteins than 2D Cultures (English)

In this study, human lung cancer cells were cultured on 2D polystyrene plates and in 3D bioprinted gelatin methacrylate (GelMA) and Matrigel for 14 days to observe spheroid formation, cell morphology and junctional proteins.
Download
Assessing the effectiveness of the I-DOT, a low-volume noncontact liquid dispensing device, to form spheroids using the liquid overlay technique.

Tumor Spheroid Formation Using the I.DOT

Assessing the effectiveness of the I-DOT, a low-volume noncontact liquid dispensing device, to form spheroids using the liquid overlay technique.
Download
Using the BIO X to evaluate drug efficacy in aggressive forms of breast and pancreatic cancer in 2D cell cultures vs. 3D bioprinted tumor models.

Comparing Drug Response in 2D Cultures and 3D Bioprinted Tumoroids

Using the BIO X to evaluate drug efficacy in aggressive forms of breast and pancreatic cancer in 2D cell cultures vs. 3D bioprinted tumor models.
Download
3D bioprinting a syngeneic tumor model of murine lung cancer on the BIO X to evaluate an immune checkpoint inhibitor (PD-1) in a 3D T cell cytotoxicity assay.

3D Bioprinted Tumor Model for Immuno-oncology Applications

3D bioprinting a syngeneic tumor model of murine lung cancer on the BIO X to evaluate an immune checkpoint inhibitor (PD-1) in a 3D T cell cytotoxicity assay.
Download