Application notes

Written by scientists for scientists, these papers cover a wide range of applications and highlight novel ways to optimize one’s research with our devices, technologies and consumables.

In this study, a full thickness skin tissue model was bioprinted using the BIO X. The dermis was bioprinted using primary dermal fibroblasts embedded in GelXA SKIN bioink, and the epidermis, containing a high concentration of keratinocytes embedded in ColMA, was deposited on top of the dermis.

3D Bioprinting Skin Tissue Models Using Primary Cells

In this study, a full thickness skin tissue model was bioprinted using the BIO X. The dermis was bioprinted using primary dermal fibroblasts embedded in GelXA SKIN bioink, and the epidermis, containing a high concentration of keratinocytes embedded in ColMA, was deposited on top of the dermis.
Download
Bioprinting mini liver models for hepatotoxicity studies using a novel method of “droplet in droplet” encapsulation on the BIO X.

Evaluating Liver Toxicity in Bioprinted Mini Livers

Bioprinting mini liver models for hepatotoxicity studies using a novel method of “droplet in droplet” encapsulation on the BIO X.
Download
Using the BIO X to evaluate drug efficacy in aggressive forms of breast and pancreatic cancer in 2D cell cultures vs. 3D bioprinted tumor models.

Comparing Drug Response in 2D Cultures and 3D Bioprinted Tumoroids

Using the BIO X to evaluate drug efficacy in aggressive forms of breast and pancreatic cancer in 2D cell cultures vs. 3D bioprinted tumor models.
Download
3D bioprinting a syngeneic tumor model of murine lung cancer on the BIO X to evaluate an immune checkpoint inhibitor (PD-1) in a 3D T cell cytotoxicity assay.

3D Bioprinted Tumor Model for Immuno-oncology Applications

3D bioprinting a syngeneic tumor model of murine lung cancer on the BIO X to evaluate an immune checkpoint inhibitor (PD-1) in a 3D T cell cytotoxicity assay.
Download